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Nonlinear analysis of the shearing instability in granular gases

R. Soto and M. Mareschal
CECAM, ENS-Lyon, 46 Alle´e d’Italie, 69007 Lyon, France

M. Malek Mansour
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It is known that a finite-size homogeneous granular fluid develops a hydrodynamiclike instability when
dissipation crosses a threshold value. This instability is analyzed in terms of modified hydrodynamic equations:
first, a source term is added to the energy equation which accounts for the energy dissipation at collisions and
the phenomenological Fourier law is generalized according to previous results. Second, a rescaled time for-
malism is introduced that maps the homogeneous cooling state into a nonequilibrium steady state. A nonlinear
stability analysis of the resulting equations is done which predicts the appearance of flow patterns. A stable
modulation of density and temperature is produced that does not lead to clustering. Also a global decrease of
the temperature is obtained, giving rise to a decrease of the collision frequency and dissipation rate. Good
agreement with molecular dynamics simulations of inelastic hard disks is found for low dissipation.

PACS number~s!: 45.70.Mg, 47.20.Ky
i
an
on

ss
rg
a-

a
ic
h
ti
f
e
ry

id
c’
an
th
ir

pi
e
y

n
ra
io

o
s

he
tie

le
ne

ch
to
ived

oes
ys-
le
her
c-
gy
r all
di-

ve
gy
ho-

eous
h
dy-

rgy

ns
the
all
an
I. INTRODUCTION

The understanding of the dynamics of granular fluids
crucial for various industrial processes. This has led to m
investigations where theory, experiments, and simulati
are used in order to construct a predictive theory@1–8#.
There is hope that for moderate densities and slightly di
pative grains, grain dynamics may be described on la
scales by using fluid hydrodynamics with slight modific
tions.

One way to guess which changes to make in stand
hydrodynamics is to use the tools developed by statist
mechanics in order to derive hydrodynamic equations. T
is justified by the fact that a simple grain model, the inelas
hard-sphere model, has been shown to reproduce most o
phenomena occurring in granular systems: in some sens
has proven to contain the essential ingredients necessa
predict the peculiar physics observed@9–14#.

The scheme used in the study of nonequilibrium flu
can then be extended to granular fluids: ‘‘microscopi
simulations permit us to compute the equation of state
values for transport coefficients which are then fed into
guessed macroscopic equations. Comparison between d
nonequilibrium simulations of microscopic and macrosco
models allows us then to test the validity of the propos
macroscopic equations. This approach was used recentl
two of us to investigate heat transport~heat being identified
with the kinetic energy associated with the grains’ motio!
and it has been shown that Fourier’s law has to be gene
ized with a density gradient term appearing in the express
for the heat flux@15#.

In the inelastic hard-sphere model~IHS!, grains are
spherical hard particles with only translational degrees
freedom. The energy dissipation is included through a re
tution coefficientr lower than one. As for hard spheres, t
collision is an instantaneous event and the grain veloci
after a collision are given by
PRE 621063-651X/2000/62~3!/3836~7!/$15.00
s
y
s

i-
e

rd
al
is
c
the
, it
to

s
’
d
e
ect
c
d
by

l-
n

f
ti-

s

v185v11 1
2 ~11r !@ n̂•~v22v1!#n̂, ~1!

v285v22 1
2 ~11r !@ n̂•~v22v1!#n̂, ~2!

wheren̂ is the unit vector pointing from the center of partic
1 towards the center of particle 2. It is convenient to defi
the dissipation coefficientq5(12r )/2 which vanishes when
collisions are elastic. In what follows units are chosen su
that the disk diameters and the particles masses are set
one. To get the diameter or mass dependence of the der
results, a simple dimensional analysis should be used.

The IHS model, like the elastic hard-sphere model, d
not have an intrinsic energy scale. This means that two s
tems with the same initial configuration and with the partic
velocities of one system being equal to those of the ot
multiplied by one scaling factor will follow the same traje
tory but at different speeds. This lack of an intrinsic ener
scale also implies a simple temperature dependence fo
hydrodynamic quantities that may be found by simple
mensional analysis.

When a fluidized granular medium is allowed to evol
freely in a box with periodic boundary conditions, the ener
decreases continuously in time and the system remains
mogeneous. This nonsteady state is called the homogen
cooling state~HCS! and it is the reference state from whic
perturbations are studied: it is analogous to the thermo
namic equilibrium state for elastic systems@10,16,17#. In the
IHS model this state is particularly simple and the ene
decreases obeying the Haff’s law@18#

E~ t !5
E~0!

~11t/t0!2
. ~3!

In order to avoid the cooling of the system, the simulatio
are made at constant energy: at every collision between
grains, the dissipated energy is redistributed by scaling
the velocities. This is equivalent to a time rescaling and c
3836 ©2000 The American Physical Society
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be treated as such in the equations for the continuous mo
Using appropriate hydrodynamic equations, this homo
neous state is predicted to be unstable under certain co
tions of density, system size, and dissipativ
@9,10,19,16,20,21#. Considering the dissipativity coefficien
q as a bifurcation parameter, while increasingq at constant
density and number of grains, the system first develops
instability characterized by two counterflows, the shear
instability, and then either a clustering regime in which t
density becomes inhomogeneous or a vortex state w
many small vortices develop throughout the system.

For given values of total number of grainsN and number
density r5N/V the shearing instability appears when t
dissipation coefficient is larger than a critical value. In t
low density and large system limit, the critical value is giv
~in two dimensions! by @10#

q̂5
p

Nr
. ~4!

Note that in the thermodynamic limit the system is alwa
unstable for any finite dissipation.

In this paper we will study the shearing instability using
nonlinear hydrodynamic approach. We will focus on the fin
structures that are created once the instability is develo
In Sec. II we will develop a formalism that allows us to tre
the HCS as a nonequilibrium steady state, and we
present a stability analysis around the steady state. Nex
Sec. III we will present the nonlinear analysis of the ins
bility, obtaining expressions for the hydrodynamic fields b
yond the instability. It will also be shown that the presen
of the instability modifies the collision rate and energy d
sipation rate. Finally, in Sec. IV we compare the predictio
of the continuous model with molecular dynamics simu
tions of inelastic hard disks. Conclusions are presented
Sec. V.

In what follows we will treat the two-dimensional cas
but the extension to three dimensions is direct.

II. RESCALED TIME FORMALISM

Consider a two-dimensional system composed ofN grains
interacting with the IHS model in a square box of sizeL that
has periodic boundary conditions in both directions. Un
are chosen such that Boltmann’s constant and the par
masses are set to one. Granular temperature is defined a
gously to the kinetic definition for classical fluids

T5
1

N (
i

1

2
~vi2v!2, ~5!

wherev is the hydrodynamic velocity.
The shearing instability has been predicted by lin

analysis of the hydrodynamic equations for the IHS. Also
analysis of the first stages of the nonlinear regime has b
done in Ref.@23#. As we shall see, the relative simplicity o
the model allows for a complete nonlinear analysis as w

The hydrodynamic equations for the low-density IHS a
similar to the usual hydrodynamic equations for fluids exc
el.
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that there is an energy sink term and the heat flux has c
tributions from the density gradient@22,24,16,15#. The equa-
tions read

]r

]t
1“•~rv!50, ~6!

rS ]v

]t
1~v•“ !vD52¹•P, ~7!

rS ]T

]t
1~v•“ !TD52“•J2P:“v2v, ~8!

with the following constitutive equations

Pi j 5rTd i j 2h0ATS ]v i

]xj
1

]v j

]xi
2~“•v!d i j D , ~9!

J52k0AT¹T2m0

T3/2

r
¹r,

v5v0r2T3/2,

where h0 , k0 , m0, and v0 do not depend on density o
temperature but on the dissipation coefficientq. In particular,
v0 and m0 vanish with q. It has been shown for differen
granular models that at low dissipation these transport c
ficients have small deviations from elastic fluids, and exp
sions around the elastic coefficients can be done~see for
example@22,25#!.

The total energy dissipation rate can be computed fr
the hydrodynamic equations, obtaining

dE

dt
5

d

dtE ~rT1rv2/2!dV ~10!

52E vdV. ~11!

In the HCS, where density and temperature are homogen
and there is no velocity field, the energy dissipation rate

dE

dt
52Vv0r0

2T3/2. ~12!

This continuous cooling down has the disadvantage
any perturbation analysis must be done with respect to
nonsteady state. To overcome this difficulty we propos
differential time rescalingds5gdt such that in this rescaled
time, energy is conserved. The transformation correspond
a continuous rescaling of all the particle velocities such t
the kinetic energy remains constant. This rescaling does
however, introduce new phenomena since as we have m
tioned the IHS does not have an intrinsic time scale, and t
a time rescaling gives rise to the same phenomena viewe
different speed.

In order to keep the rescaled energy constant the ap
priate value ofg is given by

g5AE~ t !

E~0!
. ~13!
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The rescaled time hydrodynamic fields transform as

v5g ṽ, ~14!

T5g2T̃, ~15!

Pi j 5g2P̃i j , ~16!

J5g3J̃, ~17!

v5g3ṽ, ~18!

where the tilde denotes the rescaled variable.
Due to the nonconstant character of the time rescal

extra source terms appear in the hydrodynamic equati
which can be simplified using the relation

1

g

dg

ds
52

1

2E~0!
E ṽdV. ~19!

Suppressing the tildes everywhere, the equations n
read

]r

]s
1“•~rv!50, ~20!

rS ]v

]s
1~v•“ !vD52“•P1

rv

2E~0!
E vdV,

rS ]T

]s
1~v•“ !TD52“•J2P:“v2v1

rT

E~0!
E vdV.

Note that the constitutive relations~9! remain unchanged un
der time rescaling.

In the rescaled time, the HCS reduces to a nonequilibr
steady state with a continuous energy supply that comp
sates the energy dissipation. As there is no energy scale
fix the reference temperature to be one, so thatE(0)5N.
The HCS is then characterized by$r5rH ,T51,v50%. To
study the stability of this state, we first introduced the chan
of variables

r5rH1dr, ~21!

v5dv, ~22!

T511dT. ~23!

Taking the~discrete! Fourier transform of the linearized hy
drodynamic equations around HCS, it is easy to check
the transverse velocity perturbation decouples from the
and satisfies the equation

rH

]dvk'

]s
5lkdvk'

, ~24!

with

lk[2
4k2p2

L2
h01

rH
2 v0

2
, $kx ,ky%50,61,62, . . . .

~25!
g,
s,

w

m
n-
we

e

at
st

For small values ofv0 ~proportional to the dissipation! lk

,0, so that the perturbationsdvk'
decay exponentially~the

casek50 should not be taken into account since the cen
of mass velocity is strictly zero!. But there exists a critica
value of v0 for which lk vanishes, thus indicating the sta
bility limit of the corresponding mode. The first modes
become unstable correspond touku51 ~i.e., kx561, ky50
andkx50, ky561). The instability threshold forv0 is then
given by

v̂05
8p2h0

rH
2 L2

~26!

The stability for the other modes has been studied previou
@16#. In this last reference it was shown that for low dissip
tion, the first instability that arises is indeed the transve
velocity instability.

The origin of the instability can be understood also
terms of the real-time hydrodynamics. In fact, the relaxat
of the transverse hydrodynamic velocity is basically due
the viscous diffusion, which depends on the system s
whereas the cooling process is governed by local dissipa
collisions. There exists therefore a system length bey
which the dissipation of thermal energy is faster that
relaxation of the transverse hydrodynamic velocity. The l
ter will then increase, when observed on the scale of ther
motion, thus producing the shearing pattern.

III. NONLINEAR ANALYSIS OF THE INSTABILITY

In this section we propose to work out the explicit form
the velocity field beyond the instability. The calculations a
tedious and quite lengthy, so that here we only describe
plicitly the basic steps. We start by taking the Fourier tra
form of the full nonlinear hydrodynamic equations, obtaini
a set of coupled nonlinear equations for the mod
$drk ,dTk ,dvki

,dvk'
%, wheredvki

represents the longitudina

component of the velocity field. Close to the instability (v0

'v̂0 , uku51), the modesdv1'
exhibit a critical slowing

down sincel1'0, whereas the other hydrodynamic mod
decay exponentially~Ref. @16#!. On this slow time scale, i.e.
s'O(l1

21), the ‘‘fast’’ modes $drk ;dTk ;dvki
;dvk'

,kÞ1%
can be considered as stationary, their time dependence
ing mainly throughdv1'

. Setting the time derivatives o
these fast modes to zero one can express them in terms o
slow modesdv1'

. If now one inserts the so-obtained expre
sions into the evolution equation for the slow modes, o
gets a set of closed nonlinear equations fordv1'

~adiabatic

elimination @26,27#!, usually referred to asnormal formor
amplitude equations@27#. Note that such a calculation i
only possible close to the instability threshold, where t
amplitude ofdv1'

approaches zero asv→v̂0. On the other
hand, in this limit the only Fourier modes that will have larg
amplitudes are the transverse velocity modes with wave v
tor equal to62p/L ~i.e., uku51). There are four such mode
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dvk'
55

A1 , k5~1,0!

A1* , k5~21,0!

A2 , k5~0,1!

A2* , k5~0,21!.

~27!

After some tedious algebra, one finds

rH

dA1

ds
5l1A124p2L22h0~C1uA1u21C2uA2u2!A1 ,

~28!

rH

dA2

ds
5l1A224p2L22h0~C1uA2u21C2uA1u2!A2 ,

~29!

where

C15
8~k02m0!23h0

8~k02m0!22h0
, ~30!

C25
2~k02m0!1h0

2~k02m0!2h0
. ~31!

The amplitude equations~28! and ~29! admit three different
stationary solutions,

~a! A150, A250, ~32!

~b! uA1u5Â, A250, ~33!

A150, uA2u5Â, ~34!

~c! uA1u5uA2u5ÂA C1

C11C2
, ~35!

where we have set

Â5
L

2p
A l1

h0C1
. ~36!

Note that the phases of the above stationary solutions
arbitrary ~recall thatA1 andA21 are complex conjugate!.

The trivial solution~a! corresponds to a motionless fluid
whereas the solutions~b! are shearing states with the corr
sponding fluxes oriented either in they or x direction. The
mixed modesolution ~c! represents a vortex state with tw
counter-rotating vortices in the box.

Below the critical point (l1,0), the trivial solution~a! is
the only stable one. As we cross the critical point this so
tion becomes unstable. A linear stability analysis of the E
~29! shows that the shearing states are stable provided

C2

C1
.1 ~37!

while the mixed mode solution is unstable. Satisfying E
~37! depends on the values of the transport coefficients.
small dissipativity it is always fulfilled, provided the numb
density remains relatively low. In fact, a mixed mode st
has been observed recently in a highly dense system@10#.
re

-
s.

.
or

e

The occurrence of either shearing states depends on
initial state. In a statistical sense, they are equally proba
For example, in the case that the system chooses the sol

$A15Â, A250%, the velocity field reads

v52Â cos~2px/L !ŷ, ~38!

where ŷ represents the unit vector inY direction. The tem-
perature and density perturbations are then given by

dT52~Â!2@114~12C1!cos~4px/L !#, ~39!

dr5rH~Â!24~12C1!cos~4px/L !. ~40!

The instability of the transverse velocity field thus gives r
to modifications of the temperature and density fields. T
temperature decreases globally, since part of the energ
taken by the convective motion. Moreover, because of
viscous heating, the temperature profile exhibits a spa
modulation, i.e., it is higher where the viscous heating
higher. The density profile also shows a spatial modulat
that keeps the pressure homogeneous~recall that for a two-
dimensional low density gas,dp'rhdT1dr, in system
units!. This modulation of the density, which was first o
served by Goldhirsh and Zanetti@9# ~Fig. 2 of their paper! in
the study of the clustering instability, is stable and does
lead to clustering.

Using the above expressions for the hydrodynamic fie
the energy density profile reads

e5rH@11Â2 cos~4px/L !#. ~41!

Assuming the molecular chaos hypothesis, the mean
lision rate n̄ and the dissipation ratev̄ can be computed a
well,

n̄5
2Ap

VrH
E r2ATdV5n0rHS 12

Â2

2
D , ~42!

v̄5
1

VE vdV5v0rH
2 S 12

3Â2

2
D . ~43!

These relations show that the global decrease of the temp
ture leads to corresponding decreases of the collision
quency and dissipation rate.

It is important to note that the origin of the nonline
coupling of slow modes lies in the viscous heating term a
the state dependence of the transport coefficients, and n
the usual convective derivatives@(v•“)v#. In fact, as we
have shown above, the shearing state produces a variatio
the density and temperature fields that modify locally t
value of the transport coefficients. This effect, which is ne
ligible in classical fluids, can become very important
granular fluids, mainly because of the lack of scale sepa
tion of the kinetic and hydrodynamic regimes. Contrary
normal fluids, here, the convective energy is comparable
the thermal energy. In fact, as will be shown in the M
simulations, in a well developed shearing state up to hal
the total kinetic energy corresponds to the convective m
tion. The microscopic source of this phenomenon lies in
fact that only the relative energy is dissipated in binary c
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lisions, i.e., the center-of-mass energy is conserved. In o
words, the thermal energy is dissipated but the convec
one is conserved. This asymmetry in the energy dissipa
mechanism is at the very origin of the shearing instability

IV. MOLECULAR DYNAMICS SIMULATIONS

For the molecular dynamic simulations we have cons
ered a system made ofN510 000 hard disks with a globa
number densityrH50.005. Inelastic collision rules ar
adopted, with a dissipativity varying fromq50.0 to 0.12.
The boundary conditions are periodic in all directions.
spatially homogeneous initial condition is adopted, with v
locities sorted from an equilibrium~zero mean velocity!
Maxwellian distribution. We note that the density is lo
enough so that the system remains within the low-den
regime.

The simulations have been performed in the resca
time. Computationally, this is achieved by doing a norm
IHS simulation~event driven molecular dynamics@28#!, but
at each collision the value of the kinetic energy is upda
according to the energy dissipated. The instantaneous v
of g is computed from the kinetic energy, allowing us
evaluate all the rescaled quantities. Note that thes time can
be integrated in the simulation becauseg is a piecewise con-
stant function, thus allowing us to make periodic measu
ments in the system. Finally, to avoid roundoff errors, a r
velocity rescaling is performed whenever the kinetic ene
decreases by a given amount~typically 1027 of the initial
value!.

In each simulation, the collision frequency and tempe
ture dissipation rate are computed with respect to thes time,
after the system has reached a stationary regime. In Fig. 1

FIG. 1. Mean collision frequencyn̄ and dissipation ratev̄ as a
function of the dissipativityq obtained in molecular dynamic
simulations withN510 000 particles and densityrH50.005. The
lines are drawn for easier reading of the graphs.
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collision frequency and the temperature dissipation rate
presented as a function of the dissipation coefficientq. As
expected, the shearing instability is associated with an ab
decrease of these functions. It must be noted that the dec
ing of the collision frequency is more that 30%, which co
responds to a global decrease of the temperature of m
than 50%. This means that when the shearing is fully dev
oped, about half the total kinetic energy is taken by the m
roscopic motion. This phenomenon is typical of granular m
dia and has no counterpart in classical fluids.

To measure the critical pointq0 we fit the collision fre-
quency according to the following piecewise function:

n̄5H a0 , q<q0

a01a1~q2q0!1a2~q2q0!2, q.q0
~44!

obtaining

q050.0686, ~45!

a050.0178, ~46!

a1520.167, ~47!

a251.03. ~48!

Similarly, the dissipation rate is fitted according to

v̄5H b0q, q<q0

b0q1b1~q2q0!q1b2~q2q0!2q, q.q0
~49!

Using q050.0686, one finds

b050.000 166, ~50!

b1520.004 66 ~51!

b250.0546. ~52!

To compare these results with our theoretical predictio
we need the explicit form of the transport coefficients, up
critical dissipativity. Unfortunately, there are no known e
pressions for them in the case the two-dimensional~2d! IHS
model in the low-density regime. However, as the critic
dissipativity is small we can use the the quasielastic appr
mation for the transport coefficients~that is, taking the first
nontrivial order inq) @29,22#

v054Apq, ~53!

h05
1

2Ap
, ~54!

k052/Ap, ~55!

m050, ~56!

where it has been used explicitly that units are chosen s
that the particles masses and the disk diameters are set to
one.



co

at

s

lu
a

ns
tiv
ow

ic
c
r-
di
c-
ll

e
i

r
er
un

n

de
n

ty
iti

tum

of
the
how
The
the
he
re-
t.

HS
ws
ilib-
for

the
ar

he

PRE 62 3841NONLINEAR ANALYSIS OF THE SHEARING . . .
Replacing the above approximations for the transport
efficients in Eq.~26! and in Eqs.~25!, ~30!, and ~36!, the
critical dissipativity and the amplitude of the shearing st
are given by

q̂5
p

rH
2 L2

, ~57!

Â5rHLA 30

29p
dq ~58!

5A30

29

dq

q̂
. ~59!

For the presented simulation, the predicted critical dis
pativity is

q̂50.0628, ~60!

which shows a discrepancy of 8% with the observed va
This difference is consistent with the adopted approxim
tions.

The predicted values fora0 , a1 , b0 , b1 @cf. Eqs. ~42!,
~43!, ~57!, and~59!# are

a050.0177, ~61!

a1520.146, ~62!

b050.000 177, ~63!

b1520.004 38, ~64!

which are also consistent with the adopted approximatio
Since the system is periodic, the developed convec

pattern can diffuse in the direction perpendicular to the fl
~the phases of the complex amplitudesAi are arbitrary due to
Galilean invariance!. As a result, the average hydrodynam
fields remain vanishingly small, mainly because of ‘‘destru
tive’’ interference. To overcome this difficulty we have pe
formed another series of simulations, keeping perio
boundary conditions in the vertical direction, while introdu
ing a pair of stress-free and perfectly insulating parallel wa
in the horizontal direction~in a collision with a wall the
tangential velocity is conserved whereas the normal on
inverted!. As a consequence, the total vertical momentum
conserved, which will be simply set to zero initially.

The nonlinear analysis for this case is similar to the pe
odic one, except that here the direction of the flow patt
remains always parallel to the walls. Furthermore, the
stable wave vector is nowk5p/L, because of the fixed
boundary conditions. As a result all the previous predictio
remain valid, except that everywhereL must be replaced by
2L.

We have used the very same number of particles and
sity for this series of simulations, but, of course, the differe
boundary conditions produce a new critical dissipativi
Performing the same analysis as before, the measured cr
point and fit parameters turn out to be

q050.0163, ~65!

a050.0178, ~66!
-
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e
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a1520.562, ~67!

a258.93, ~68!

b050.000 175, ~69!

b1520.0179, ~70!

b251.06, ~71!

while the predicted ones are

q̂50.0157, ~72!

a050.0177, ~73!

a1520.583, ~74!

b050.000 177, ~75!

b1520.0175. ~76!

Equations~38!, ~40!, and~41! onceL is replaced by 2L,
indicate that the perturbation of the transverse momen
density (j5rv) has a wave vector equal tokx5p/L, while
the density and energy density have wave vectorskx
52p/L. In the simulations we computed the amplitudes
these Fourier modes using the microscopic definitions for
particle, momentum, and energy densities. Figures 2–4 s
the predicted and computed Fourier modes amplitudes.
predictions are in good agreement with the simulations in
neighborhood of the critical point, showing that not only t
average quantities like the collision frequency are well p
dicted, but also the whole hydrodynamic picture is correc

V. CONCLUSIONS

Taking advantage of the lack of energy scale in the I
model, a rescaled time formalism was introduced that allo
us to study the homogeneous cooling state as a nonequ
rium steady state. Using a hydrodynamic description

FIG. 2. Amplitude of thekx52p/L cosine component of the
density field as a function of the dissipativityq. The dots are the
results of molecular dynamics simulations, the dashed line is
full nonlinear theory prediction, and the solid line is the nonline
theory prediction where the critical point is taken from the fit. T
simulations were done in a channel withN510 000 particles and
densityrH50.005.
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granular media written with a rescaled time variable,
shearing instability has been studied in the nonlinear regi
It has been shown that the shearing state is the stable sol
and its amplitude has been computed. The appearance o
velocity field produces that part of the kinetic energy go
from the kinetic to the hydrodynamic scale. In usual flui
this redistribution of the energy is negligible, but in granu
fluids it can represent an important fraction of the total e
ergy. This phenomenon is a manifestation of a global pr
erty of granular fluids: there is not in general a clear sepa
tion between the kinetic and the hydrodynamic regimes. T
could lead us to put into question the validity of a hydrod
namic description. Nevertheless, at small values of the d

FIG. 3. Amplitude of thekx52p/L cosine component of the
energy density field as a function of the dissipativityq. Graph sym-
bols and simulation parameters are explained in Fig. 2.
ev
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-
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-
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pativity coefficient, predictions based on the nonlinear h
drodynamic equations are in excellent agreement w
molecular dynamics simulations. Both the value of the cr
cal dissipativity and the behavior after the instability h
developed are well predicted. This is a remarkable re
which shows again how robust the hydrodynamic fluid eq
tions are when they are tested at time and length sc
where their validity could be questioned.
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FIG. 4. Amplitude of thekx5p/L cosine component of the
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